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Abstract— This document suggests a synthesis of a hybrid 

observer for switching systems. Such a hybrid observer is made 

up of a discrete observer identifying the switching signal and 

another one producing an estimation of the evolution of the 

continuous state. The developed estimation technique is the 

moving-horizon-state estimation (MHSE).  In fact, this approach 

enables us to transpose the problem of observation into a 

problem of optimization. The used optimization algorithm is the 

Levenberg-Marquardt method. The state estimation for SDC is 

liable to simultaneously reconstruct the switching signal and the 

continuous state vector. The illustrated method is validated 

through estimation problematic of a two-mode CSTR chemical 

reactor. 

 

Keywords— hybrid observer, moving horizon, nonlinear hybrid 

systems, optimization algorithm. 
 

I. INTRODUCTION 

Currently, the systems gradually grow in complexity when 

presenting the continuous-characteristic variables and the 

eventually discrete variables. These so-called hybrid dynamic 

systems (HDS) are characterized by the interaction between 

the continuous and the discrete parts [1]-[2]. 

The process-control, control and surveillance (detection and 

defect diagnosis, break-downs in the system) require reliable 

knowledge of the state variables [3]. In most dynamic systems, 

the only available variables are the inputs and outputs. 

Therefore, it is often necessary to reconstruct the system state 

in order to develop the control [4]-[5]. Accordingly, we seek 

to synthesize an auxiliary system which can provide an 

estimate of the state and determine the unknown sizes. The 

synthesis is carried out throughout the measured signals and 

the set of knowledge, which can be collected, of the process 

[6]. 

The switching dynamic system (SDC) is a class of 

SDH. It is occasionally defined by the pair (p; x) called the 

hybrid state vector which is a combination of the situation p 

(switching signal) indicating the active sub-system and the 

state value x [7]-[8]. 

The proposed hybrid observer consists of two parts: a 

discrete observer, based on the theory of discrete event 

systems which identifies the switching signal, and a 

continuous observer, based on the classical theory of 

observers which produces an estimate of the evolution of the 

dynamic system continuous state [9]-[10]. The state 

estimation for the SDC is likely to simultaneously reconstruct 

the switching signal and the continuous state vector so as to 

provide an estimate of the hybrid state vector. 

In this paper, we intend to build a hybrid observer 

that provides an identification of a mode in evolution p̂  and 

an estimate of the state vector x̂ . The developed estimation 

technique is the Moving Horizon State Estimation (MHSE). 

The very technique reformulates the estimation problem as a 

minimization of a criterion. In other words, it is meant to 

minimize the difference between the system measurement and 

its prediction on a moving horizon. In the schema of 

observation that we propose, we will use the Levenberg-

Marquardt algorithm as an optimization routine. 

The paper is organized as follows. In Section II, the estimation 

problem is formulated. The MHSE estimation algorithms are 

proved in Section III regarding the requirements for 

observability. In Section IV, to show the executions of the 

algorithms, this approach and the tools for the states 

reconstruction fall over the estimation problematic of a two-

mode CSTR chemical reactor. Finally, a conclusion is given 

in Section V. 

 

II. PROBLEM FORMULATION 

We consider the switching system made up of N nonlinear 

sub-system described by the following equation: 

( ) ( )( ( )) ( ( ))

( )

p t p t

m m

x f x t g x t u

y h x

 



                     (1) 

 

( ) 1,2,...,p t I N   the index of the active mode, it also 

represents the discrete state of the hybrid system at moment
 
t. 

( )p t can be related to a temporal criterion with regions or 

surfaces in the space of the state or with an external parameter 

[11]. 
nx  is the state vector, 

mu  is the control input 

vector, 
my  is the  system output. We may define (.)f , 
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(.)g and (.)h as the fields of vector that are assumed to be 

differentiable. 
pf  is a smooth function, (0) 0pf   for all 

p I [12]-[13]. In this work, we consider only the 

phenomenon of Non-Zenon (in an interval of finite time, the 

number of switches is finite) [13]. 

We may note that kt , ,...2,1k  is the kth instant 

of switches, 00 t .For all 1 kk ttt , ( ) ( )kp t p t i   

with i I ; i.e. the mode i  is active on the interval [ tk, tk +1 [. 

The problem of observation can then be formulated in the 

following way: the mixed structure of SDH is the structure of 

the proposed hybrid observer which is a combination of a 

discrete observer and a continuous observer. In the discrete 

case, the observer is a detector of mode; it is the observer with 

discrete moving horizon using the routine of optimization of 

Levenberg-Marquardt. By using the data (y,u), the discrete 

observer provides  ˆ 1,2,...,p N . Thereafter, this 

information p̂  as well as the data (y,u) are used by the 

continuous observer to build the continuous state vector x̂  

[14]-[15]. 

In this work, the method of observation sits on the technique 

of observation with a moving horizon together with the 

routine of optimization of Levenberg-Marquardt. 

III. SYNTHESIS OF THE HYBRID OBSERVER 

The suggested hybrid observer is composed of a discrete 

observer to identify the current mode and a continuous 

observer to estimate the continuous state. 

A. Presentation of the considered observer  ¶ 

In the structure of the considered observer, the discrete 

observer uses, on the one hand, the continuous input u and, on 

the other hand, the output of the SDH model (fig.1).Regarding 

the continuous observer, it estimates the continuous state by 

using the estimate of the discrete state as well as the 

continuous input u and the continuous output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 hybrid observer 

In each discrete mode, the continuous state of the considered 

SDC is written as: 

( ( )) ( ( ))

( )

p px f x t g x t u

y h x

 



 For  1,2,...,p N       (2)  

Concerning the mixed structure of SDH, the structure 

of the suggested observer is a combination of a discrete 

observer and a continuous observer. The considered hybrid 

observer is indicated on fig.1. 

In this case, the discrete observer is a detector of mode. By 

using the data (y, u), the discrete observer 

provides  ˆ 1,2,...,p N .Thereafter, this information and 

the data (y, u) are used by the continuous observer to build the 

continuous state vector x̂  [16]. 

The studied observation technique is the observer with a 

moving horizon using Levenberg-Marquardt optimization 

routine. Such an observer with a moving horizon MHSE will 

be studied thoroughly in the following section. 

B. Moving Horizon State Estimator 

The MHSE method solves the problem of the state 

estimation of a dynamic system by a nonlinear optimization 

problem [17]. 

Let us say that  0,0,x t x  is the solution of the system at 

every moment t through the initial condition ‘ 0x ’ and 

 0,0,y t x is the corresponding output. 

The principle of the estimator with a moving horizon 

consists in estimating on a given horizon  0,k kt t lh  the 

single initial state 0x̂  which minimizes a quadratic criterion 

happening on the error of the output. We use, then, the process 

dynamic model to estimate the current state 0
ˆ( )kx t lh  from 

the initial state 0x̂  which is previously estimated (Fig.2).In 

the following sampling period, the horizon of estimate is 

shifted one period, then we resume the procedure of 

estimation on the new interval  1 1 0,k kt t lh    and so on 

[18]-[19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 MHSE Method 
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The base of the MHSE method is to transform the 

problem of estimate into a problem with quadratic criterion by 

using a window of a moving fixed size. Generally, the used 

criterion J is: 

 
0

2
( )

k

k

t lh

k mk

k t

J x y y




                                    (3) 

Where y represents the measured outputs vector of 

the process, ym is the output which is predicted from the 

observer and x is the vector of the states to be identified. tk is 

the beginning of the horizon, lh0 is the length of the horizon 

[20]. 

In this work, to solve this problem of optimization, we will 

use the algorithm of Levenberg-Marquardt for the continuous 

case and the discrete case. 

C. Levenberg-Marquardt algorithm 

The optimization algorithm of Levenberg-Marquardt (LM) 

is based on an update of Gauss-Newton type of the unknown 

factors. It is an iterative algorithm [21]-[22]. 

For the synthesis of the continuous observer, the equation (3) 

admits an optimum if the condition of optimality ( 0
J

xo





) 

is verified. 

By applying the limited development of this criterion, we have  

        

1

2
2

( ) ( )

( )

1
0

2 .

i

i

i i i

T

i i

x x

T

i

i x x

J x J x x

J
J x x

x

J
x x x

x x







  

 
    

 
     

  

      (4) 

The variation J  of the criterion is 

21
( ). ( , ). 0

2

T

i i iJ Grad x x x Hess i j x x        (5) 

With Grad and Hess are respectively the gradient and the 

hessian are given by  

1

( )
( ) 2 ( ( )) k

k

i

T N
m i

i k m

kx x i

y xJ
Grad x y y x

x x

 
      

        (6) 
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m i
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  

   

 
  

  


 

 





                 (7) 

By applying the condition of optimality 0
J

x





 we obtain 

then: 

( ) ( , ). 0i iGrad x Hess i j x                                 (8) 

Thereafter, the variation of the state is given by  
1

1 ( , ) ( )i i i ix x x Hess i j Grad x

                 (9) 

The principle of the method of Levenberg-Marquardt 

consists in neglecting the term which can make the Hessian 

matrix negative and add a diagonal matrix to the Hessian in 

order to adjust the eigenvalues of the matrix of descent [23]-

[24]. 

The new value of the state with the iteration i+1 is given by 

the equation of recurrence: 

 
1

1
ˆ ˆ ( , )i i ix x Hess i j I J



    
                    

(10) 

With 

 

2

1

( )
( , ) 2 k

N
m i

k j

y x
Hess i j

x

 
  

  


                           

(11)

 

i  is the relaxation coefficient.Adjust the eigenvalues of the 

hessian matrix by dividing or by multiplying once or many 

times until the convergence of the method [25]. 

For the design of the continuous observer, this technique of 

optimization is given by the algorithm1.  

 

Algorithm 1 

Step 1 initialization of the parameters  00; ;k    

Step 2 calculation of 
2( ), ( ), ( )k k kJ x J x J x   

Step 3 Tests on 
0( )kJ x    

       If yes the end and the convergence is obtained 

       If no we move to step 4 

Step 4 Calculating 
1

2 ( ) . ( )k k kd J x I J x


       

                             0. 1 0.k k kx x d   and 1( )kJ x   

Step 5 Tests on 
1( ) ( )k kJ x J x   

If yes calculate the new parameters /10; 1k k     

and return to step 2. 

If no calculate the new value of  : 10    and return to 

step 4. 

The state estimate x passes by the exploitation of the criterion 

to be minimized and by the algorithm of optimization. 

 

Algorithm 2 
For the design of the discrete observer, the same principle and 

the same technique of optimization are used for the estimate 

of the switching signal. 

The quadratic criterion of the discrete state is given by: 

 
0

2

k

sh

k mk

k t

S S


                          (12) 

Where S represents the measured switching signal, this 

signal can be modeled by a temporal function describing the 
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trajectory taken by the modes i of the system. Sm is the 

switching signal predicted from the observer, tk is the 

beginning of the horizon, lh0 is the length of the horizon. 

Algorithm 2 is similar to algorithm 1 by replacing the 

criterion J given by equation 3 by the criterion   given by 

equation 12. 

D.  General flow-chart of the hybrid observer MHSE 

The general flowchart of the considered hybrid observer is 

a combination of two algorithms: the first gives an estimate of 

the continuous state x of the dynamic system (1) at the end of 

the chosen horizon, i.e. at time l=tk +lh0, but the second 

identifies the switching moment p. This algorithm uses the 

following terminology: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Illustrative flow chart of the hybrid observer with a moving horizon  

 

IV. APPLICATION TO A TWO-MODE CSTR CHEMICAL PROCESS 

 

Continuous stirred tank reactors (CSTRs) are known to be 

one of the systems that exhibit complex behavior. 

A. Description of the process  

The considered process is a reactor with a continuously 

agitated tank (CSTR) where an irreversible exothermic 

reaction of the form A → B occurs. This system is supplied by 

an input current through a selected valve which is connected 

to two different sources: a source 1 supplies the component A 

with a flow 1q , the concentration 1AfC  and the 

temperature 1fT , and a source 2 supplies the component A 

with a flow 2q , the concentration 2AfC and the temperature 

2fT   (fig. 4) [26]-[27]-[28]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4¶System of reactor with a continuously agitated tank (CSTR)  

 

Every moment, the reactor is supplied by one of the 

sources. The reactor is, then, switched between two modes: 

mode 1 ( 1i  ) and mode 2 ( 2i  ) [29]. 

In each mode, the process is described by the following 

differential equations [29]:  

0

0

( ) exp

( )
( ) exp

( )

iA
Afi A A

i
fi A

p

c

p

qdC E
C C k C

dt V RT

qdT Hr E
T T k C

dt V c RT

UA
T T

c V





  
     

 
   

     
 


  

 

     (13) 

 

Where CA is the concentration of the component A and T is 

the temperature of the reactor. The nominal values of the other 

parameters are given in table 1 [27]-[29].The reactor is cooled 

by a flow of cooling liquid at a constant rate and a variable 

temperature Tc. 
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TABLE I 
NUMERICAL PARAMETERS OF THE STUDIED REACTOR 

Notation Description Value and unit 

V Reactor of the volume  100 L 

K0 Reaction rate constant 7.2 1010 L/min 

E/R Activation energy therm 8750  K  

Hr Enthalpy of reaction -5.104 mol/m3 

ρ Density of the fluid  1000 g/L 

Cp Heat capacity of the fluid  0.239 J/gK 

UA Heat transfer constant 5.104 J/minK 

 

The parameters describing the sources of supply of each 

mode are indicated in table 2 [29]. 

TABLE III 
Parameters of the sources of supply 

mode Q(l min-1) CAf (mol l-1) Tc (K) 

1 50 1.5 350 

2 200 0.75 350 

 

B.  Objective 

During the reaction, we need to control the concentration 

CA (mol/l) of component A in the reactional medium in the 

course of time. However, it is difficult to follow the evolution 

or the measurement of this state. It is then necessary to 

estimate the concentration CA. 

Similarly, we suppose that the position of the valve indicating 

the source of supply (active mode) is determined by an 

unknown arbitrary signal. Thus, a hybrid observer will be 

implemented for the reconstruction of the concentration CA 

and for the determination of the active mode p 

(reconstructions of the switching signal). So, we re-enact the 

vector ( x̂ , p̂ ). 

C. Implementation of the estimator 

 

In equation (13), we define the following vectors: 

   TA

T
TCxxx  21  

is the model state vector; 

Ty  is the output; cu T is the control. 

We consider that the real switching signal p(t) describing the 

active mode is approximately modeled  by the following 

system of temporal equation: 

     

   

10

20

1 0,0.5 1,2 2.75,4 mod 1
( )

2 0.5,1 2,2.75 mod 2

t

t

e if t e
p t

e if t e





    
 

  

    

(14)                                          

 

The evolution of the signal p(t) is given by fig. 5 
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Fig. 5 The switching signal p(t) 

 

The model was simulated according to the following initial 

conditions: 

The state  0 3 / ,308x mol l K , the control Tc= 350K and 

0 1p p   for the mode. 

The initial state of the estimator is: 

 0 2 / ,308mx mol l K  for the continuous state and 

0 2mp   for the mode. 

In this work, for the continuous estimate, we are basically 

interested in the concentration CA. Since the temperature T is 

the system output, so it is a measurement. 

 

1) Simulation result: 

The estimation results of the switching signal ( )p k , the 

concentration CA and the temperature T are respectively 

represented by fig. 6, fig.7 and fig. 8. 
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Fig. 6 Estimation of the mode p  
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Fig.7 Estimation of the concentration CA  
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Fig.8 Estimation of the temperature T  

Fig. 9 presents the estimation results of the temperature T in 

the presence of a Gaussian noise. 

0 0.5 1 1.5 2 2.5 3 3.5 4

300

305

310

315

320

325

Time [mn]

T
e
m

p
e
ra

tu
re

 T
 [

K
]

 

 

estimated

measured

 
Fig. 9 Estimation of the temperature T in the presence of a Gaussian noise 

 

2) Interpretation 

The discrete observer re-enacts the switching signal 

p̂ during all the time of evolution with a good quality of 

estimation. The MHSE algorithm is likely to minimize the 

error between the real value of the signal p(k) and the 

estimated one (initially 0
ˆ ˆ 2p p  ) (fig.6). The continuous 

observer uses the switching signal which is identified as p̂  

and the data u and y to determine the concentration ˆ
AC . At 

every moment of switching i, the algorithm MHSE is liable to 

minimize the error between the simulated value CA (initially 2 

mol/l) and the estimated one (initially 3 mol/l) which will be 

null as from the minimal moments 
mt  (fig. 7). They are the 

necessary time for the estimator to eliminate all the errors 

between these two values in each switching of mode 1 

towards mode 2. For the temperature, the estimate is ideal. 

Since the temperature is an output, so it is a measurement (fig. 

8). 

In each period, the estimator tends to reduce the difference 

between the real state and the estimated state until its 

disappearance. It is practical since this method is based on the 

approaches of optimization. Thus, the method finds the 

minimum and the states are well distinguished. 

To test the robustness of the estimator with a moving horizon, 

a Gaussian noise was added to the measurement (fig.9). In the 

presence of the noise in the output T and for some amplitude, 

fig. 9 shows that the disturbance is quickly compensated and 

filtered by the MHSE method, the concentration is 

reconstructed and the observer can characterize its trajectory. 

Thus, the MHSE method keeps its promises and proves its 

power. 

The perfect estimation is given by a hybrid observer 

which gives, via its discrete part, an identification p̂  of the 

mode which will be used by the continuous observer for the 

determination of the continuous state ˆ ˆˆ
T

Ax C T 
 

. The 

approach of the recognized observation corrects the errors and 

updates the state of the process. 

3) Observer performances 

Our main contribution was to formalize an algorithm of 

nonlinear hybrid estimation that can be applied to a wide 

variety of systems. Our observer benefits from the advantages 

of the method with a moving which is independent of the 

structures of the observed model. Our principal expectations 

were: 

-  The development of the combination of a continuous 

observer and a discrete observer to provide the hybrid vector 

ˆ ˆ( , )p x . 

-  The development of the coupling of a robust observer 

of the MHSE type with a technique of non-linear optimization. 

The MHSE method is able to work with the models 

resulting from the various representations. 

 

V. CONCLUSION 

 

          This document comes up with a new hybrid system 

observation technique: the hybrid observer with a moving 

horizon “MHSE”. Such an observer is composed of a discrete 
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observer for the identification of the current mode and a 

continuous observer for the estimation of the continuous 

state.In fact, the MHSE method reformulates the problem of 

the state estimation of a dynamic system to a problem of 

nonlinear optimization. At the level of optimization, both 

observers, the continuous and the discrete, use the algorithm 

of Levenberg-Marquardt. The nonlinear MHSE hybrid 

observation was implemented and applied to the 

determination of the concentration of a species A in a 

continuously running reactor and to the identification of the 

switching signal. The obtained results show an excellent 

convergence between the simulated values and the results of 

the estimates. Equally important, the study of the quality of 

the estimate proves the strength of the MHSE estimator; in 

other words, its robustness with regard to the presence of the 

noise. 

Unlike most of the estimation approaches existing in the 

literature, the technique of hybrid MHSE deals with the model 

independently of its structure since the estimator needs only 

one model of the system rather than to transform or linearize 

it. 

The forthcoming researches will be purposed to direct the 

hybrid observation method towards the synthesis of an 

effective technique of diagnosis and the integration of the 

hybrid MHSE in a control law for the non linear industrial 

systems. 
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